

MEIJICOCCENE, A NEW CYCLIC HYDROCARBON FROM *BOTRYOCOCCUS BRAUNII**

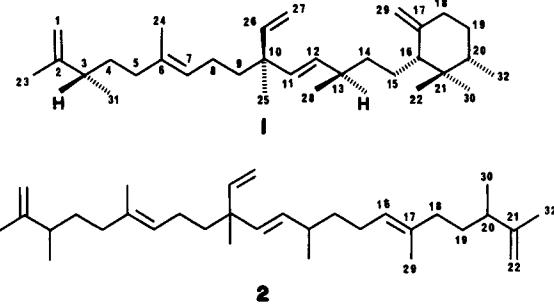
M. MURAKAMI, H. NAKANO, K. YAMAGUCHI, S. KONOSU, O. NAKAYAMA,* Y. MATSUMOTO† and H. IWAMOTO†

Laboratory of Marine Biochemistry, Faculty of Agriculture, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan; *Bio-industry Development Center, Japanese Association of Industrial Fermentation, 5-10-5 Shinbashi, Minato-ku, Tokyo 105, Japan;

†Laboratory of Applied Microbiology, Faculty of Agriculture, Meiji University, Ikuta, Tama-ku, Kawasaki 214, Japan

(Revised received 15 May 1987)

Key Word Index—*Botryococcus braunii*; Chlorophyceae; alga; structural determination; cyclic hydrocarbon; meijicoccene; botryococcenes.


Abstract—A new cyclic hydrocarbon of the botryococcene type, meijicoccene ($C_{32}H_{54}$), has been isolated from the colonial green alga *Botryococcus braunii* strain Berkeley mass-cultured at Meiji University. This compound was a minor hydrocarbon (10% of total hydrocarbons) and was separated from other botryococcenes by reversed-phase HPLC. A structure is proposed for meijicoccene based on ^{13}C NMR, 400 MHz 1H NMR, COSY, NOESY, NOE differential spectra and mass spectrometry.

INTRODUCTION

The colonial green microalga *Botryococcus braunii* is well known to produce unusually high levels of hydrocarbons. The alga has been proposed as a renewable source of fuels from recent concern for future energy requirements. *B. braunii* is classified into two races *A* and *B* according to the differences in composition of hydrocarbons and in the ultrastructure of its cell wall [1, 2]. Cultured strains of race *A* produce linear olefins, odd numbered from C_{23} to C_{31} [3], whereas those of race *B* accumulate isoprenoid polyunsaturated hydrocarbons of general formula C_nH_{2n-10} , $n=30-37$, termed botryococcenes [4-6]. Especially, *B. braunii* strain Berkeley of the latter race has drawn much attention, because its hydrocarbons closely resemble the constituents of crude oil [7]. Recently, new types of botryococcenes such as a branched hydrocarbon, darwinene ($C_{36}H_{62}$) [8] and a new rearranged cyclic botryococcene ($C_{34}H_{58}$) [6] have been isolated. More recently, the absolute configuration of botryococcene ($C_{34}H_{58}$) has been elucidated [9].

In a previous paper [10], we have reported the lipid composition of *B. braunii* Berkeley mass-cultured at Meiji University. In the course of this study, we found a new type of botryococcene homologue by reversed-phase HPLC. Such a situation promoted us to determine structure of this new hydrocarbon.

In the present paper, a structure is proposed for the new rearranged hydrocarbon, meijicoccene **1** (Scheme 1), based on the data of the ^{13}C NMR 400 MHz, 1H NMR, COSY, NOESY, NOE differential spectra and mass spectrometry along with consideration of a biosynthetic pathway from a homologue of botryococcene (C_{32} botryococcene) **2**.

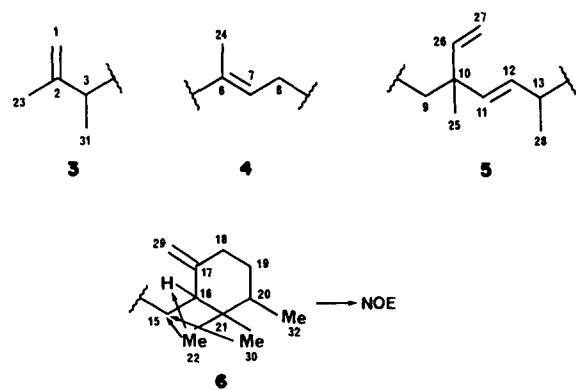
Scheme 1. Structures of meijicoccene **1** and C_{32} botryococcene **2**.

RESULTS AND DISCUSSION

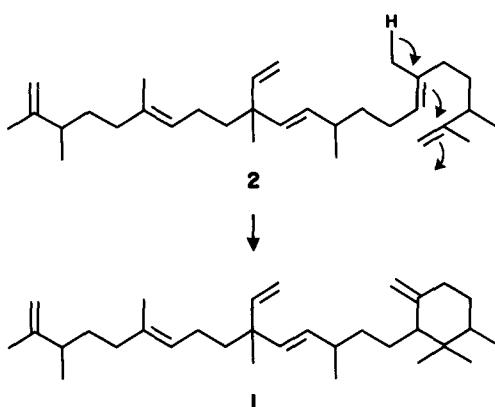
The new hydrocarbon, meijicoccene, had no UV absorption maximum above 220 nm. The EIMS spectrum showed the $[M]^+$ at m/z 438 (molecular formula: $C_{32}H_{54}$). The fragmentation pattern closely resembled that of C_{32} botryococcene ($C_{32}H_{54}$) **2** [5]. However, the mass spectrum of this compound gave little structural information. ^{13}C NMR (Table 1) revealed 32 carbon signals, which contained three exomethylenes at 111.12 (*t*, $C-27$), 109.41 (*t*, $C-1$ or $C-29$), 109.22 (*t*, $C-1$ or $C-29$), 150.25 (*s*, $C-2$ or $C-17$), 149.97 (*s*, $C-2$ or $C-17$), 146.94 (*d*, $C-26$), one trisubstituted olefin at 135.05 (*s*, $C-6$), 124.72 (*d*, $C-7$), and one disubstituted olefin at 135.54 (*d*, $C-11$), 134.37 (*d*, $C-12$). The spectrum also indicated a structure closely related to **2** [5] except for the existence of signals at δ 56.73 (*d*, $C-16$) and 36.89 (*s*, $C-21$) instead of signals of one trisubstituted olefin (δ 134.91 and 124.61) in **2**. According to the degree of unsaturation, meijicoccene must contain one ring system, and these two carbon atoms ($C-16$, $C-21$) were thought to be concerned with the formation of the ring system. A detailed analysis of the

* Part 13 in the series Chemistry and Utilization of Plankton.
For Part 12 see ref. [10].

Table 1. ^1H and ^{13}C NMR data for meijicoccene and C_{32} botryococcene [5] in CDCl_3


Position	Meijicoccene δ_{H}	δ_{C}	C_{32} Botryococcene δ_{C}
1	4.508 (1H, <i>dd</i> , 3, 1) 4.67 (3H, <i>m</i>)	109.22 <i>t</i> ^a	109.35 <i>t</i> ^a
2		149.97 <i>s</i> ^b	150.01 <i>s</i>
3	2.15 (<i>m</i>)	40.84 <i>d</i>	40.74 <i>d</i>
4	0.9–1.1 (<i>m</i>), 1.1–1.5 (<i>m</i>)	33.48 <i>t</i> ^c	33.38 <i>t</i>
5	1.8–2.0 (<i>m</i>)	37.58 <i>t</i>	37.52 <i>t</i>
6		135.05 <i>s</i>	134.91 <i>s</i>
7	5.090 (1H, <i>tq</i> , 7, 1)	124.72 <i>d</i>	124.61 <i>d</i> ^a
8	1.6 (<i>m</i>), 1.8–2.0 (<i>m</i>)	23.25 <i>t</i>	23.13 <i>t</i>
9	1.1–1.5 (<i>m</i>), 1.8–2.0 (<i>m</i>)	41.47 <i>t</i>	41.38 <i>t</i>
10		42.11 <i>s</i>	42.01 <i>s</i>
11	5.315 (1H, <i>dd</i> , 16, 1)	135.54 <i>d</i>	135.81 <i>d</i>
12	5.175 (1H, <i>dd</i> , 16, 8)	134.37 <i>d</i>	133.71 <i>d</i>
13	2.0 (<i>m</i>)	37.43 <i>d</i>	36.77 <i>d</i>
14	0.9–1.1 (<i>m</i>), 1.1–1.5 (<i>m</i>)	35.92 <i>t</i>	37.45 <i>t</i>
15	1.2 (<i>m</i>), 1.4 (<i>m</i>)	32.21 <i>t</i> ^c	25.84 <i>t</i>
16	1.63 (1H, <i>dd</i> , 11.5, 4.5)	56.73 <i>d</i>	124.49 <i>d</i> ^a
17		150.25 <i>s</i> ^b	134.91 <i>s</i>
18	2.1 (2H, <i>m</i>)	24.12 <i>t</i>	37.52 <i>t</i>
19	0.9–1.5 (<i>m</i>), 1.8–2.0 (<i>m</i>)	31.05 <i>t</i>	33.38 <i>t</i>
20	1.6 (<i>m</i>)	34.85 <i>d</i>	40.74 <i>d</i>
21		36.89 <i>s</i>	150.01 <i>s</i>
22	0.731 (3H, <i>s</i>)	26.95 <i>q</i>	109.35 <i>d</i>
23	1.651 (3H, <i>s</i>)	19.06 <i>q</i>	18.96 <i>q</i>
24	1.559 (3H, <i>s</i>)	15.97 <i>q</i>	15.97 <i>q</i>
25	1.066 (3H, <i>s</i>)	23.70 <i>q</i>	23.58 <i>q</i>
26	5.749 (1H, <i>dd</i> , 17, 10.5)	146.94 <i>d</i>	146.70 <i>d</i>
27	4.936 (1H, <i>dd</i> , 17, 1.5) 4.945 (1H, <i>dd</i> , 10.5, 1.5)	111.12 <i>t</i>	111.09 <i>t</i>
28	0.939 (3H, <i>d</i> , 7)	21.05 <i>q</i>	21.15 <i>q</i>
29	4.67 (3H, <i>m</i>)	109.41 <i>t</i> ^a	15.97 <i>q</i>
30	0.860 (3H, <i>s</i>)	21.74 <i>q</i>	18.96 <i>q</i>
31	0.998 (3H, <i>s</i>)	19.79 <i>q</i>	19.68 <i>q</i>
32	0.770 (3H, <i>d</i> , 7)	16.03 <i>q</i>	19.68 <i>q</i>

^{a–c}Assignments can be interchanged for each compound.


400 MHz ^1H NMR (Table 1) and COSY spectra easily defined the presence of the partial structures 3–5 (Scheme 2) in consideration of ^{13}C NMR data. But a structure of the ring system remained unknown because of the complication of the methylene region of the 400 MHz ^1H NMR spectrum. To solve this problem, NOE differential and 2D-NOESY experiments were performed. Irradiation at C-22 Me δ 0.731 (3H, *s*) showed NOE effects to H-16 δ 1.63 (1H, *dd*, 11.5, 4.5), which coupled clearly the C-29 exomethylene proton δ 4.67 (3H, *m*) in the COSY spectrum, and the C-15 methylene. Furthermore, when C-30 Me δ 0.860 (3H, *s*) was irradiated, a NOE effect was observed at the C-15 methylene. These results suggested that meijicoccene should form the ring system between C-16 and C-21 as shown in partial structure 6. Possibility of the formation of a ring system between C-2 and C-7 was excluded, because of the existence of the two characteristic methylenes at δ 23.25 (*t*, C-8) and 41.47 (*t*, C-9) as in 2 [5].

The structure of meijicoccene was also supported by the proposed biosynthetic pathway from C_{32} botryococcene (Scheme 3), which was deduced by referring to the

proposed mechanism for the biosynthesis of the cyclic C_{34} botryococcene from botryococcene [6]. However, the absolute configuration of meijicoccene is still unknown.

Scheme 2. Partial structures of 3–6.

Scheme 3. Proposed biosynthetic pathway of meijicoccene.

EXPERIMENTAL

Algal sample and culture conditions. *B. braunii* strain Berkeley belonging to the *B* race originally isolated to unialgal culture by Dr Arthur M. Nonomura from lily-culturing tanks in the Department of Botany greenhouse of the University of California, Berkeley [11] was mass-cultivated at Meiji University, Japan. Algal culture conditions are described elsewhere [10]. The alga was harvested by filtration. The yield was *ca* 4 g/l on a dry wt basis. After lyophilization, the alga was kept below -20°C until used.

Extraction and isolation of meijicoccene. Freeze-dried algal samples were extd according to the method of ref. [12]. After evapn of solvent, total lipids dissolved in hexane were applied to a column of silica gel (Wako gel C-300) and hydrocarbons were eluted with hexane. Final purification of the hydrocarbon fraction was performed on a 5 μm reversed-phase HPLC column (YMC-ODS A324, 300 \times 10 mm) with Me_2CO -MeOH (3:2) as mobile phase [13] at a flow rate of 2 ml/min using a differential refractometer to give colourless meijicoccene (yield; 2.5% of total lipids). Purity of this compound was checked by FID-GC on a fused silica OV-1 column (25 m) with temp prog from 170 to 190°

at 1°/min, inj. temp 220°, using He as carrier gas at 60 ml/min and a split ratio of 100 : 1.

Spectral analysis. UV were measured in CHCl_3 . EIMS was obtained at 70 eV. ^{13}C NMR (25.15 Hz) was recorded in CDCl_3 using TMS as int std. 400 MHz ^1H NMR, COSY, NOESY and NOE differential spectra were obtained also in CDCl_3 .

Acknowledgments—We are indebted to Drs K. Kyogoku and H. Kondo, Research Center, Taisho Pharmaceutical Co., Ltd, for measurements of NMR spectra. This work was supported in part by a grant from the Ministry of International Trade and Industry, Japan.

REFERENCES

1. Berkaloff, C., Rousseau, B., Coute, A., Casadevall, E., Metzger, P. and Chirac, C. (1984) *J. Phycol.* **20**, 377.
2. Metzger, P., Berkaloff, C., Casadevall, E. and Coute, A. (1985) *Phytochemistry* **24**, 2305.
3. Metzger, P., Templier, J., Largeau, L. and Casadevall, E. (1986) *Phytochemistry* **25**, 1869.
4. Cox, R. E., Burlingame, A. L., Wilson, D. M., Eglinton, G. and Maxwell, J. R. (1973) *J. Chem. Soc. Chem. Commun.* 284.
5. Metzger, P. and Casadevall, E. (1983) *Tetrahedron Letters* **24**, 4013.
6. Metzger, P., Casadevall, E., Pouet, M. J. and Pouet, Y. (1985) *Phytochemistry* **24**, 2995.
7. Moldowan, J. M. and Siefert, W. K. (1980) *J. Chem. Soc. Chem. Commun.* 912.
8. Galbraith, M. N., Hillen, L. W. and Wake, L. V. (1983) *Phytochemistry* **22**, 1441.
9. White, J. D., Somers, T. C. and Reddy, N. G. (1986) *J. Am. Chem. Soc.* **108**, 5352.
10. Yamaguchi, K., Nakano, H., Murakami, M., Konosu, S., Nakayama, O., Kanda, M., Nakamura, A. and Iwamoto, H. (1987) *Agric. Biol. Chem.* **51**, 493.
11. Wolf, F. R., Nonomura, A. M. and Bassham, J. A. (1985) *J. Phycol.* **21**, 3886.
12. Bligh, E. G. and Dyer, W. J. (1959) *Can. J. Biochem. Physiol.* **37**, 911.
13. McCoy, R. W. and Pauls, R. E. (1984) *J. Chromatogr. Sci.* **22**, 493.